AgentScope AI integrates advanced large language models (LLMs) into its Privacy DEX module to enhance the security and privacy of decentralized trading. This module leverages AI-powered analysis to manage private transactions and ensure that sensitive data remains confidential while providing robust risk management and audit capabilities.
Initializing LLM Models
The initialization process sets up the inference engine required for analyzing transaction data and providing real-time feedback. The following pseudo-code illustrates the process:
javascript // Initializing LLM models for Privacy DEX in AgentScope AI
const { loadModel, configureInference } = require('llm-sdk');
const config = require('./config/llmPrivacyConfig');
function initializePrivacyDEXLLM() {
// Load the model weights from the designated provider (e.g., OpenAI, HuggingFace)
const model = loadModel(config.modelPath, {
provider: config.provider,
precision: config.precision, // Options: 'fp16' or 'fp32'
});
// Configure inference parameters for optimized performance during risk assessment
const inferenceEngine = configureInference(model, {
maxTokens: config.maxTokens,
temperature: config.temperature,
topP: config.topP,
});
return inferenceEngine;
}
module.exports = initializePrivacyDEXLLM();
Supported Models and Providers
AgentScope AI supports a range of LLMs to meet diverse auditing and risk management requirements. The supported models include:
OpenAI GPT Series: Provides in-depth natural language understanding for complex code and transaction analysis.
HuggingFace Transformers: Offers versatile model options for fine-tuning and domain-specific risk assessments.
Custom In-House Models: Tailored for privacy and security analytics specific to decentralized finance (DeFi) applications.
These models are selected based on their performance, scalability, and ability to integrate seamlessly with our Privacy DEX module.
String Processing for Risk Analysis
Robust string processing is essential for parsing and analyzing transaction data and smart contract code. The following example function demonstrates basic string normalization and tokenization:
javascript // Example function for processing transaction strings for risk analysis
function processTransactionString(inputText) {
// Normalize the input by converting to lowercase and trimming extra whitespace
let normalizedText = inputText.toLowerCase().trim();
// Tokenize the input based on whitespace and punctuation
let tokens = normalizedText.split(/[\s,;()]+/);
// Further processing such as filtering or stop-word removal can be added here
return tokens;
}
module.exports = processTransactionString;
Privacy DEX Transaction Logic
Below is a Solidity code snippet demonstrating the core logic for executing a private transaction in the Privacy DEX module. This example covers transaction execution, signature verification, and fund transfer:
solidity // SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
contract PrivacyDEX {
mapping(bytes32 => bool) private processedTransactions;
// Event emitted upon successful private transfer
event PrivateTransfer(
address indexed sender,
address indexed recipient,
uint256 amount,
bytes32 txHash
);
// Function to verify signature (implementation not shown)
function _verifySignature(bytes32 txHash, bytes memory signature) internal view returns (bool) {
// Implementation for signature verification goes here
return true;
}
// Function to transfer funds (implementation not shown)
function _transferFunds(address recipient, uint256 amount) internal {
// Implementation for transferring funds goes here
}
function executePrivateTransaction(
address sender,
address recipient,
uint256 amount,
bytes memory encryptedData,
bytes memory signature
) public {
bytes32 txHash = keccak256(
abi.encodePacked(sender, recipient, amount, block.timestamp, encryptedData)
);
require(!processedTransactions[txHash], "Transaction already processed");
require(_verifySignature(txHash, signature), "Invalid signature");
processedTransactions[txHash] = true;
_transferFunds(recipient, amount);
emit PrivateTransfer(sender, recipient, amount, txHash);
}
}